D-MATH	Differential Geometry II	ETH Zürich
Prof. Dr. Urs Lang	Solution 5	FS 2025

5.1. Sectional curvature of submanifolds. Let $(\overline{M}, \overline{g})$ be a Riemannian manifold with sectional curvature sec. Let $p \in \overline{M}$ and $L \subset T\overline{M}_p$ an *m*-dimensional linear subspace.

- 1. Prove that there is some r > 0 such that for the open ball $B_r(0) \subset TM_p$, the set $M := \exp_p(L \cap B_r(0))$ is an *m*-dimensional submanifold of \overline{M} .
- 2. Let g be the induced metric on M and let see be the sectional curvature of M. Show that for $E \subset TM_p$, we have $\sec_p(E) = \operatorname{sec}_p(E)$ and if L is a 2-dimensional subspace, then $\sec \leq \operatorname{sec}$ on M.

Solution. 1. First, we know that there is some r > 0 such that the restriction of the exponential map to $B_r(0)$, i.e. $\exp_p|_{B_r(0)} \colon B_r(0) \to \exp_p(B_r(0))$, is a diffeomorphism. Furthermore, note that $L \cap B_r(0)$ is an *m*-dimensional submanifold of $B_r(0)$ and hence $M = \exp_p(L \cap B_r(0))$ is an *m*-dimensional submanifold of $\exp_p(B_r(0))$. Finally, as $\exp_p(B_r(0))$ is open in \overline{M} , it follows that M is a submanifold of \overline{M} as well.

2. Let $u, v \in E$ be an orthonormal basis of $E \subset TM_p$. Then we have

$$sec_{p}(E) = R_{p}(u, v, u, v)$$

= $\bar{R}_{p}(u, v, u, v) + \bar{g}_{p}(h_{p}(u, u), h_{p}(v, v)) - \bar{g}_{p}(h_{p}(u, v), h_{p}(u, v))$
= $s\bar{e}c_{p}(E) + \bar{g}_{p}(h_{p}(u, u), h_{p}(v, v)) - \bar{g}_{p}(h_{p}(u, v), h_{p}(u, v))$

We now prove that $h_p(u, u) = h_p(v, v) = h_p(u, v) = 0$. Extend u, v to an orthonormal basis $e_1 = u, e_2 = v, e_3, \ldots, e_{\bar{m}}$ of $T\bar{M}_p$. Then this basis induces normal coordinates on \bar{M} . Hence, we have $\Gamma_{ij}^k(p) = 0$ and thus $(\bar{D}_{e_i}e_j)_p = 0$ for all i, j. This especially implies that $h_p(u, u) = h_p(v, v) = h_p(u, v) = 0$ as claimed.

Assume now that $L \subset TM_p$ is 2-dimensional and let $q := \exp_p(x) \in M$ for $x \in L \cap B_r(0)$. By the above, we may assume that $x \neq 0$. Define $w := \frac{x}{|x|} \in TM_p$ and let c_w be the unique geodesic with c(0) = p and $\dot{c}(0) = w$. Then we have $q = c_w(|x|)$ and $u := \dot{c}_w(|x|) \in TM_q$ with |u| = 1. Furthermore, we get

$$h_q(u, u) = \left(\left. \frac{\bar{D}}{dt} \dot{c}_w \right|_{t=|x|} \right)^{\perp} = 0.$$

To compute the sectional curvature of $E = TM_q$, we extend u to an orthonormal basis u, v of E and get

$$\sec_q(E) = R_q(u, v, u, v) = \overline{R}_q(u, v, u, v) - |h_q(u, v)|^2 \le \overline{\sec}_q(E)$$

as desired.

1/3

ETH Zürich	Differential Geometry II	D-MATH
FS 2025	Solution 5	Prof. Dr. Urs Lang

5.2. Codazzi equation. Let $M \subset \overline{M}$ be a submanifold of the Riemannian manifold $(\overline{M}, \overline{g})$. For the second fundamental form h of M, we define

$$(D_X^{\perp}h)(Y,W) := (\bar{D}_X(h(Y,W))^{\perp} - h(D_XY,W) - h(Y,D_XW),$$

where $W, X, Y \in \Gamma(TM)$. Show that the Codazzi equation

$$\left(\bar{R}(X,Y)W\right)^{\perp} = (D_X^{\perp}h)(Y,W) - (D_Y^{\perp}h)(X,W)$$

holds for all $W, X, Y \in \Gamma(TM)$.

Solution. As $\overline{D}_Z W = D_Z W + h(Z, W)$ for $W, Z \in \Gamma(TM)$, we get

$$\begin{split} \bar{R}(X,Y)W &= \bar{D}_X \bar{D}_Y W - \bar{D}_Y \bar{D}_X W - \bar{D}_{[X,Y]} W \\ &= \bar{D}_X (D_Y W + h(Y,W)) - \bar{D}_Y (D_X W + h(X,W)) \\ - (D_{[X,Y]} W + h([X,Y],W)) \\ &= D_X D_Y W + h(X, D_Y W) + \bar{D}_X (h(Y,W)) \\ - D_Y D_X W - h(Y, D_X W) - \bar{D}_Y (h(X,W)) \\ - D_{[X,Y]} W - h(D_X Y - D_Y X,W) \\ &= R(X,Y) W \\ + \bar{D}_X (h(Y,W)) - h(D_X Y,W) - h(Y, D_X W) \\ - \bar{D}_Y (h(X,W)) + h(D_Y X,W) + h(X, D_Y W). \end{split}$$

Note that we used that D is torsion free, i.e. $[X, Y] = D_X Y - D_Y X$. Now, taking the perpendicular part, we conclude that the Codazzi equation

$$\left(\bar{R}(X,Y)W\right)^{\perp} = (D_X^{\perp}h)(Y,W) - (D_Y^{\perp}h)(X,W)$$

holds.

5.3. Asymptotic expansion of the circumference. Let M be a manifold, $E \subset TM_p$ a linear 2-plane and $\gamma_r \subset E$ a circle with center 0 and radius r > 0 sufficiently small. Show that

$$L(\exp(\gamma_r)) = 2\pi \left(r - \frac{\sec(E)}{6} r^3 + \mathcal{O}(r^4) \right)$$

for $r \to 0$.

D-MATH	Differential Geometry II	ETH Zürich
Prof. Dr. Urs Lang	Solution 5	FS 2025

Solution. Let $v, w \in TM_p$ be an orthonormal basis of E. Then the circle can be parametrized by $\gamma_r(\varphi) = r(v \cos \varphi + w \sin \varphi)$. For some fixed $\varphi_0 \in [0, 2\pi]$, consider the Jacobi field $Y_{\varphi_0}(r)$ associated to the geodesic variation $V(\varphi_0, r) := \exp(\gamma_r(\varphi_0))$ of the geodesic $c_{\varphi_0}(r) := \exp(\gamma_r(\varphi_0))$. Then it holds

$$L(\exp(\gamma_r)) = \int_0^{2\pi} |Y_{\varphi_0}(r)| \, d\varphi.$$

We will now compute the Taylor expansion for $|Y_0(r)|$, all other cases are similar. Clearly, we have $Y_0(0) = 0$ and $Y'_0(0) = w$. From the Jacobi equation we also get

$$Y_0''(0) = -R(Y_0, c_0') c_0'\Big|_{r=0} = 0.$$

Now taking the derivative of the Jacobi equation, we get

$$Y_0'''(0) = -\frac{D}{dr} R\left(Y_0, c_0'\right) c_0'\Big|_{r=0} = -R\left(Y_0', c_0'\right) c_0'\Big|_{r=0} = -R(w, v)v.$$

It follows that

$$|Y_0(r)| = r - \frac{R(w, v, w, v)}{6}r^3 + \mathcal{O}(r^4).$$

Therefore, we finally get

$$L(\exp(\gamma_r)) = \int_0^{2\pi} \left(r - \frac{\sec(E)}{6} r^3 + \mathcal{O}(r^4) \right) d\varphi = 2\pi \left(r - \frac{\sec(E)}{6} r^3 + \mathcal{O}(r^4) \right),$$

it was to show.

as it was to show.